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Is magnetic field due to an electric
current a relativistic effect?

Oleg D Jefimenko

Physics Department, West Virginia University, PO Box 6315, Morgantown, WV 26506, USA

Abstract. Several authors have asserted that the magnetic
field due to an electric current is a relativistic effect. This
assertion is based on the fact that if one assumes that the
interaction between electric charges is entirely due to the
electric field, then the relativistic force transformation
equations make it imperative that a second field—the
magnetic field—is present when the charges are moving.
However, as is shown in this paper, if one assumes that the
interaction between moving electric charges is entirely due to
the magnetic field, then the same relativistic force
transformation equations make it imperative that a second
field—this time the electric field—is also present. Therefore,
since it is impossible to interpret both the electric and the
magnetic field as relativistic effects, one must conclude that
neither field is a relativistic effect. The true meaning of the
calculations demonstrating the alleged relativistic nature of
the magnetic field and of the calculations presented in this
paper is, therefore, that the idea of a single force field, be it
magnetic or electric, is incompatible with the relativity theory.

Résuḿe. Il’y a l’opinion que le champ magńetique du
courantélectrique est un effet relativiste. La base de cette
opinion est que si on accept que l’interaction entre des
chargeśelectrique d́epend seulement du champélectrique, et
si les charges sont en mouvement, les equations relativistes
de transformation des forces demandent la présance d’un
deuxìeme champ—du champ magnétique. On d́emontre ici
que si l’on pŕesume que l’interaction entre des charges
électriques d́ependent seulement d’un champ magnétique, les
même equations de transformation des forces relativistes
rendent necessaire la présance d’un deuxième champ, mais
cette fois du chamṕelectrique. Cela montre que ni l’un ni
l’autre de ces champs est un effet relativiste puisqu’il est
impossible d’interpŕeter les deux champs en même temps
comme des effets relativistes. La vrais signification des
calculs qui semble indiquer la nature relativiste du champs
magńetique, comme des calculs presanteés ci-dessous, est que
l’existence d’un seul champ, que ce soisélectrique ou
magńetique, n’est pas compatible avec la théorie de relativit́e.

1. Introduction

In several electricity and magnetism textbooks [1] the
authors assert that the magnetic field due to an electric
current is a relativistic effect. This assertion is based on
the fact that if one assumes that the interaction between
electric charges is entirely due to the electric field,
then the force transformation equations of the special
relativity theory demand the existence of the magnetic
field.

It is shown in this paper that one could assert with
equal justification that the electric field rather than the
magnetic field is a relativistic effect. Therefore, since
it is impossible for both fields to be relativistic effects,
neither field should be regarded as a relativistic effect.

2. Deducing the existence of the electric field
on the basis of the relativistic force
transformation equations

Consider two very long (‘infinitely long’) line charges of
opposite polarity adjacent to each other along their entire
length. Let the magnitude of the line charge density in

each line charge beλ . Let the positive line charge move
with velocity v = νi along thex axis in the positive
direction of the axis and let the negative line charge
move with velocityv = −νi along thex axis in the
negative direction of the axis. Let us now assume that
a positive point chargeq is present in thexy plane at
a distanceR from the line charges (thex axis) and let
us assume that it moves with velocityv in the positive
direction of thex axis.

In the laboratory reference frame the two line charges
constitute a current, 2λν. By Ampere’s law, the
magnetic flux density field that this current produces
at the location ofq is

B = µ0
λv × R

πR2
, (1)

whereR is directed towardq. The force exerted byB
on q is

F = q(v × B) = q

(
v × µ0

λv × R

πR2

)
, (2)

or

F = −µ0
qλν2

πR2
R. (3)
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Let us now look at the two line charges and the point
charge from a reference frame6′ moving with velocity
v = νi relative to the laboratory. The point charge
q is stationary in this reference frame and therefore
experiences no magnetic force at all.

However, according to the relativistic force transfor-
mation equations [2], ifq experiences a radial force,F ,
in the laboratory reference frame, then it must experi-
ence a radial force

F ′ = F (1 − ν2/c2)−1/2 (4)

in the moving reference frame (c is the velocity of light).
By equation (3), this force is then

F ′ = −µ0
qλν2

πR2(1 − ν2/c2)1/2
R. (5)

Of course, equation (5) is not really meaningful
unlessλ in it is converted toλ′ pertaining to the moving
reference frame6′. For making the conversion, we
take into account that since in the laboratory reference
frame both line charges move, they both are Lorentz
contracted†, so that the magnitude of the charge density
of the positive and negative line charge in the laboratory
frame is

λ = λ0

(1 − ν2/c2)1/2
, (6)

where λ0 is the magnitude of theproper line charge
density of the two line charges (that is, the density
measured in a reference frame where the line charge
under consideration is stationary).

We also take into account that, since the positive line
charge is at rest in6′, its density there is

λ′
+ = λ0. (7)

Finally, we take into account that the velocity of the
negative line charge in6′ is, by the velocity addition
rule of the relativity theory [4],

ν ′
− = 2ν

1 + ν2/c2
, (8)

so that the line charge density of the negative line charge
in 6′ is

λ′
− = − λ0

(1 − ν ′2/c2)1/2

= − λ0

[1 − (4ν2/c2)/(1 + ν2/c2)2]1/2
, (9)

† The method for convertingλ to λ′ that follows is the
customary method used in many electricity and magnetism
textbooks. However, this method is open to criticisms because
it is based on a debatable use of Lorentz length contraction.
As we now know, the significance of Lorentz contraction for
determining length, shape and volume of moving bodies is
far from clear. Some of the works dealing with this subject
are given in [3]. An alternative, unquestionably rigorous,
conversion of λ to λ′ based entirely on Lorentz–Einstein
transformation equations of relativistic electrodynamics is
presented later on in this paper.

or

λ′
− = −λ0(1 + ν2/c2)

(1 − ν2/c2)
. (10)

The total line charge density in6′ is therefore

λ′ = λ′
+ + λ′

− = λ0 − λ0
(1 + ν2/c2)

(1 − ν2/c2)
, (11)

or

λ′ = − 2λ0ν
2

c2(1 − ν2/c2)
, (12)

which, with equation (6), gives

λ′ = − 2λν2

c2(1 − ν2/c2)1/2
. (13)

Substituting equation (13) into equation (5), we
obtain for the force on the point chargeq in the moving
reference frame6′

F ′ = µ0
c2qλ′

2πR2
R, (14)

and, sinceµ0c
2 = 1/ε0,

F ′ = qλ′

2πε0R2
R, (15)

which is exactly what we would have obtained for the
force exerted onq in 6′ by the electric field due to the
line charge of densityλ′ (note thatλ′ is negative, so that
the field is directed toward the two line charges).

2.1. Finding λ′ from Lorentz–Einstein charge
density transformation equation

As has been pointed out above (see footnote below left),
the method of convertingλ into λ′ by means of Lorentz
contraction is open to criticisms, to say nothing of its
complexity. A preferable method for convertingλ into
λ′ is to use the Lorentz–Einstein transformation equation
for charge density [5]

ρ ′ = γ (ρ − νJx/c
2), (16)

whereγ = 1/(1 − ν2/c2)1/2 andJx is thex component
of the current density. The charge densityρ in the
laboratory reference frame isρ = (λ+ + λ−)/S = 0,
and the current density isJx = 2λν/S, whereS is the
cross-sectional area of the positive and the negative line
charge. Substitutingρ and Jx into equation (16) and
multiplying by S, we immediately obtain

λ′ = −γ
2λν2

c2
= − 2λν2

c2(1 − ν2/c2)1/2
, (17)

which is the same as equation (12) obtained earlier with
considerably greater effort by using Lorentz contraction
and the velocity addition rule.
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2.2. An alternative method for obtaining E′

It is instructive to derive the electric field responsible
for the force in equation (15) without using the force
transformation. We start with the Lorentz–Einstein
transformation equations for the electric field [6]

E′
x = Ex, (18)

E′
y = γ (Ey − νBz), (19)

E′
z = γ (Ez − νBy). (20)

According to equation (1), in the laboratory reference
frameBy = 0, and

Bz = µ0
λν

πR
. (21)

The electric field components in the laboratory reference
frame areEx = Ey = Ez = 0, because the total charge
density λ+ + λ− = 0. By equations (18)–(20), the
electric field in6′ is therefore

E′
y = −γµ0

λν2

πR
= −µ0

λν2

πR(1 − ν2/c2)1/2
. (22)

Using now equation (17) to replaceλ by λ′ and
remembering thatµ0c

2 = 1/ε0, we promptly obtain

E′
y = λ′

2πε0R
, (23)

which is the same as the electric field indicated by
equation (15).

3. Discussion

As is clear from equations (1)–(15) and (23), relativistic
force transformation equations demand the presence of
an electric field when the interactions between electric
charges are assumed to be entirely due to a magnetic
force. We could interpret this result as the evidence
that the electric field is a relativistic effect. But the
well known fact that similar calculations demand the
presence of a magnetic field, if the interactions between
the charges are assumed to be entirely due to an electric
force, makes such an interpretation impossible (unless
we are willing to classify both the magnetic and the
electric field as relativistic effects, which is absurd).
We must conclude therefore that neither the magnetic
nor the electric field is a relativistic effect†.

The only correct interpretation of our results must
then be that interactions between electric charges that
are either entirely velocity independent or entirely
velocity dependent is incompatible with the relativity
theory. Both fields—the electric field (producing a force
independentof the velocity of the charge experiencing

† In this connection it should be mentioned that J D Jackson, in
[7], points out on the basis of a general analysis of relativistic
relations that it is impossible to derive magnetic field from
Coulomb’s law of electrostatics combined with equations of the
special relativity theory without some additional assumptions.

the force) and the magnetic field (producing a force
dependenton the velocity of the charge experiencing
the force)—are necessary to make interactions between
electric charges relativistically correct. By inference
then, any force field compatible with the relativity theory
must have an electric-like ‘subfield’ and a magnetic-like
‘subfield’.
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