which show good local (short-time) accuracy but when applied to Hamiltonian systems will lead to a regularly increasing deviation in energy.

To be specific, the simple first-order symplectic algorithm

$$\mathbf{p}_{n+1} = \mathbf{p}_n + \mathbf{F}(\mathbf{q}_n) \Delta t, \quad \mathbf{q}_{n+1} = \mathbf{q}_n + \mathbf{P}(\mathbf{p}_{n+1}) \Delta t \tag{4.153}$$

exactly conserves a Hamiltonian \tilde{H} that is associated to the given Hamiltonian H by

$$\tilde{H} \equiv H + H_1 \Delta t + H_2 (\Delta t)^2 + H_3 (\Delta t)^3 + \dots$$
 (4.154)

where

$$H_1 = \frac{1}{2}H_pH_q$$
, $H_2 = \frac{1}{12}(H_{pp}H_q^2 + H_{qq}H_p^2)$, $H_3 = \frac{1}{12}H_{pp}H_{qq}H_pH_q$... (4.155)

 $(H_q$ being shorthand for $\nabla_q H$ etc.) In particular, for the harmonic oscillator the perturbed Hamiltonian

$$\tilde{H} = H_{ho} + \frac{\omega^2 \Delta t}{2} pq \tag{4.156}$$

is conserved exactly.

Incidentally, the one-step algorithm 4.153 is also known as the *Euler-Cromer method*. When applied to oscillator-like equations of motion it is a definite improvement over the (unstable) Euler-Cauchy method of equ. 4.7.

EXERCISE: Apply the (non-symplectic) RK method and the (symplectic) Størmer-Verlet algorithm (or the Candy procedure) to the one-body Kepler problem with elliptic orbit. Perform long runs to assess the long-time performance of the integrators. (For RK the orbit should eventually spiral down towards the central mass, while the symplectic procedures should only give rise to a gradual precession of the perihelion.)

4.2.6 Numerov's Method

This technique is usually discussed in the context of boundary value problems (BVP), although it is really an algorithm designed for use with a specific initial value problem (IVP). The reason is that in the framework of the so-called shooting method the solution to a certain kind of BVP is found by taking a detour over a related IVP (see Sec. 4.3.1). An important class of BVP has the general form

$$\frac{d^2y}{dx^2} = -g(x)y + s(x) \tag{4.157}$$

with given boundary values $y(x_1)$ and $y(x_2)$. A familiar example is the onedimensional Poisson equation for the potential $\phi(x)$ in the presence of a charge density $\rho(x)$,

$$\frac{d^2\phi}{dx^2} = -\rho(x) \tag{4.158}$$