Original documentation by Hon Wai Lau

The documentation below is the original of Hon Wai Lau, author of the original project. It is
reproduced from Google Code Archive.

Warning: The documentation below is included here for reference only and may not be up-to-date.

Documentation of the Formulas question type

« Introduction
e Question text placeholder
o Placeholder of the subquestions
o Placeholder of answer boxes
« Variable system
o Scope of variable
o Variable name
o Variable type
o Random variables
o Variable assignments
o Using variable in text
« Answer and grading criteria
Answer type
Model answer
Grading_criteria
Grading_ variables
Manual grading criteria
« Unit system
o Unit and format
o Conversion rules
e Trial mark sequence
e Grading scheme
« Appendix
o List of functions for number
o List of operators for number
o List of additional functions for non-number type variables

(o]

o

o

o

o

Introduction

This question type aims to be generic so that various type of non-trivial questions can be created easily.
The variable system and answer boxes allows great flexibility to define question and simplify the job to
make complex question. In this documentation, various part of this question type is described, including the
formatting, variables, grading, unit system and trial mark sequence.

For creating simple question, see Tutorial.

Question text placeholder

You can insert the subquestion text and answer boxes at a given location using placeholders. To substitute
a placeholder by its the contents, the placeholder name needed to be enclosed by { and } in the text.

Placeholder of the subquestions

This kind of placeholder allows you to insert subquestion in a particular location in the main question.

The placeholders name is a string starting with '# symbol and followed by any characters of [A-Z a-z ©-
9] , such as #1, #2a, #2b and #A. Subquestion can be labelled by a placeholder name in the options called
'Placeholder'. Note that, by default, the subquestion will be appended at the end if no placeholder is
specified. To use them in the main question text, type {#1} instead of #1, for example:

The following is the question 1, part a and part b.
{#1a}

{#1b}

The following is the question 2.

{#2}

Placeholder of answer boxes

This kind of placeholder provides a simple way to arrange the answer boxes in the subquestion text.

It is particularly useful when the subquestion requires more than one answer. This flexibility allows you to
place the answer boxes in the form of matrix, coordinates, embedding into the question text or any other
way you wanted.

The placeholder names are _@ for the first answer box, _1 for the second answer box, etc, and _u for the
unit box. The number of the answer boxes that can be used is the same as the number of elements entered
in the Answer. For example, with two answers for one subquestion, the following can be used

What is the coordinate of the particles?

(x,y) = ({_@}, {_1}) { u}

The box {_0} is actually corresponding to the special variable _0 inthe Grading variables. By default, all
missing placeholder are automatically appended at the end. Thatis { ©}{_u} for one answer subquestion,
and { 0}{_1}{_u} fortwo answers subquestion.

An exception for the substitution is that there will only be one longer answer box when {_0}{_u} are
immediately neighbour to each other, and there is only one numerical answer and unit. In this case, the
answer and unit box will merge together as one long answer box, and the students are expected to type
them in the same box.

Variable system

Variables can be used to substitute question texts, define the answers and specify grading criteria. One of
the main purpose of the variables system is to simplify the task to make variation of the questions. Since
the variables are generated at the beginning of a quiz, the quiz will be halted if any errors occur. Hence, in

order to minimize the error, the system is designed to only have deterministic variables type, constant
length lists and no branching.

Scope of variable

There are four places that you can define and manipulate the variables, each of them have different scope
of application.

Random The place to define the variation of variables for the whole questions.

variables

Global The scope includes all (instantiated) random variables.

variables

Local The scope includes all global variables. Note: Each subquestion has its own local
variables variables scope.

Grading The scope includes all local variables, plus special variables (e.g. @, _1) depending on
variables students' response.

Main text All global variables can be used in the substitution

Subquestion text All local variables for the subquestion can be used in the substitution
Answer All local variables for the subquestion can be used in the expression
Grading criteria All grading variables can be used in the expression

Variable name

A variable name is a string of alphanumeric characters [a-z A-Z 0-9 _] (Numbers and underscore
cannot be located at the start of string). Examples of valid variable are

X
y1l

z 1
foo_bar

Variable type

Each variable will be assigned with a type implicitly. A type is either number, string or algebraic variable,
plus list of numbers or list of strings. List is defined as the elements enclosed by [and] . An element in
list can be referred using syntax A[b] , for example, [4,5,6][0] gives the first number, that is, 4. These
types are listed below:

Number A number, for example: 1.2e-3

String Characters enclosed by two double quotes, for example: "Hello"

List of Numbers enclosed by [and] , for example: [4,5,6] , The equivalent short hand syntax
number are [4:7] or[4:7:1.]

List of string Strings enclosed by [and] , for example: ["A", "B", "C"]

Algebraic It is simply a set of numbers (see syntax) defined in the non-random variable scope, for
variable example: {1:100} .

Random variables

During the quiz creation, each random variables will be assigned by ONE value defined by the expression.
Hence, each student can have their own set of value for the quiz attempt.

A random variable has different syntax than other variables and it only be defined in the field Random
variables. These variables can be defined by assigning a set of elements or a shuffling of a list. The
probability of selecting each element is equal so that each element has equal chance to be drawn. There
are three main types of expressions:

Set of elements: A set of elements is elements enclosed by '{' and '}. The element can be either a number, a
string, a number list, or a string list. For example, the variable below is a set of list of numbers, and the
probability for element [2,3] is 1/5:

F=A
[e,0],
[1,1],
[2,4],
[3,9],
[4,16]
}s

Set of numbers: A set of numbers is numbers enclosed by '{'and '}'. You can also specified a range in the
format of 'start:stop:interval', where the numbers satisfied (start + n*interval) < stop, n = 0,1,2,3,..., will be
added. If the interval is not specified, value 1 will be used. Note that the last end point is not included by
definition, but may be include for non-integer due to numerical errors. The set of numbers defined below
demonstrate different range syntax. Also, the probability of the elements in each set are 1/8,1/10 and 1/20
respectively.

A ={1,2,3,4,5,6,7,8};
B ={0:1:0.1};
C = {1:10, 10:100:10, 100, 200};

Shuffled list: A list can be passed to the shuffle function. For the example below, the instantiated
variable Swith take one of the permutation of the input list, say [4,3,2,5] or [2,5,4,2] The probability
of each list is therefore 1/4! = 1/24.

S = shuffle([2,3,4,5]);

Variable assignments

Variable assignments allow you to define and manipulate variables. It can be defined in the option field of
global variables, local variables and grading variables.

Expression: It is any combinations of the numbers, variables together with operators and functions listed in
the Appendix. Typically, it is just a simple mathematical formula evaluated to a number. The variables used
in the expression must be defined before.

Assignment: It is used to assign the evaluated result of an expression to a variable, in the form of
'name = expression ;' .

For loop: It allows a simple iteration in the form of for(element:1ist). All elements element in
the 1istwill be iterated.

Examples of the assignment:

= 1; # text after "#" and the end of line will be treated as comment
= exp(3.333);

= round(b, 1); # it can round the number to the desire decimal point
=1 + sin(2) + pow(a,2);

[1,2,3];

= A[@e];

= A[a];

= A[2];

= A[@] + A[1] + A[2];

= max(x, y);

distance = sqrt(x*x + y*y + z*z);

theta = atan2(y, x);

S £ NK X > D Q T o
1l

smaller = X < y; # smaller is 1

con = (x <y) + (y < z); # con is 2

B =ill(3,0); # B is now [9,0,0]

C = map("sqrt",fill(3,16)); # square root of [16,16,16], so C is now [4,4,4]

S = 0;
for (i:A) s = s + i; # s is 6 after the loop
for (i:[0:3]) {
B[i] = sum(map("+",A,fil1(3,i))); # B will be [6,9,12]
}
p = pick(a+9,"","A","B"); # pick() always choose the first element if index out of
range
u=4{-3,-2,-1,1:100}; # u and v define algebraic variables, the numbers are the
points for evaluation
v = {-100:100:1};

Note:

« Important! Index out of range cannot be checked by the validation during question save, so you have to
check it yourself. Otherwise, the quiz initialization for some students may fail. Use pick() as a safe
variant if applicable.

 Logical true is treated as 1 and false is 0, so the variable con above gets the value 2.

« There is no branching, however, you may use the ternary operator (condition) ? (true) :
(false)for number or the pick() function for general case

« The available functions are list in the Appendix. There are many additional functions for the numeric list
operation, and few for the list of string.

Using variable in text

It is simple to substitute the variables in the text, you only need to enclose the corresponding variables
by {and } .

Each text field have a scope of variables. All variables x of either number or string in the scope of the text
can be used to replace the corresponding placeholder {x} in the text.

It is also possible to evaluate an expression directly in the text by adding an equal sign at the beginning of
the bracket such as {=x/1000} . It is easier to use if the named variables are not required. However, no
error check will be done unless the question is being instantiated in the quiz. An example is the rescaling of
meter to kilometer below:

What is the speed of the rocket if it travels with distance {=x/1000} km in {t} s?

Answer and grading criteria

For a subquestion to become valid, you must give a mark and define an answer for it. Also, grading critera
must be specified in order to check the correctness of a students' response.

Answer type

This question support four answer types. Each type will accept a particular set of numbers, operators,
functions and possibly algebraic variables. Depending on the quiz purpose, some or all of these answer
types may be used.

Number You can type in the standard scientific E notation such as: 3.14, 6.626e-34.

Numeric You can type in numbers and arithmetic operation+ - * / ~ and () and the constant pi
such as: 5+1/2, 2*9, 3pi.

Numerical You can type in everything of numeric plus a set of single variable functions sin(), cos(), tan(),
formula asin(), acos(), atan(), exp(), log10(), In(), sqrt(), abs(), ceil(), floor() such as: sin(pi/12), 10 In(2)

Algebraic You can type in every numerical formula and any algebraic variables.
formula

Note that:

« Students will also need to know these rules in order to input the answer correctly.

» The possible input have the following relation: Number ¢ Numeric € Numerical formula c Algebraic
formula.

« The answer will need a list of string for Algebraic formula and list of number for other answer type.

« "~"in the algebraic formula means "power", not "exclusive or"

« Juxtaposition between numbers or symbols mean multiplication.

» The format check in the quiz interface will show warning sign when the format is wrong for the answer
type. It does not give any information about the correct answer.

« All symbols will be treated as algebraic variable in the answer type of algebraic formula. Hence, you
may need to hint students what symbols should be used in the question.

Model answer

Depending on the answer type, the answer options will accept either expression that evaluated to a list of
number or string (for algebraic formula). The size of the list will determine how many input boxes for this
subquestion. If only one answer is required, you can specify a number or string instead of the one element

list.

For the answer type of Number, Numeric and Numerical formula, a list of number (or a single number) is
required. Suppose the variables are defined, each line below is a possible answer.

pi()

[sin(pi()/2), cos(pi()/2)]
[ans[@], ans[1], ans[2]]
ans

For the answer type of Algebraic formula, a list of string (or a single string) is required. Suppose the
variables are defined, each line below is a possible answer.

IleXp(_a X)ll
"a x*"2 + b ynr2"
["a sin(x)", "b cos(x)"]

Note that all algebraic variables must be defined in order to be usable in the answer. For the answers above
to work, you will need to define the following variables:

a = 2;

b = 3;

x = {-100:100:1};
y = {1:100:1};

Grading criteria

A grading criteria is required to determine the correctness of the students' response. It requires a
expression evaluated to a number in which 0 means false and 1 means true. Typically, it is either the relative
error or absolute error with a tolerance level.

For the question with only one answer, the absolute error is simply the different between the model answer
and students' response. Hence if the true answer is 3.2 and the students' response is 3.1, then absolute
erroris |3.2-3.1| = 0.1 You may want to limit the range of correct response, say, 0.05. In this case, you
should select absolute error < 0.05 Similarly, the relative error is defined by the absolute error divided
by the absolute value of model answer. See the _err and _relerr in grading variables below for more
details.

Grading variables

For the typical case, the absolute error and relative error can satisfy most grading criteria. However,
sometimes there is a need for other grading criteria.

In the scope of Grading variables, it contains all local variables and students' response. With the response
from student, you can then define your own grading criteria. The information related to the students'
response and model answer is stored in the set of special variables started by underscore as shown below:

Variable Description
name
e, 1, The students' response of each "coordinates”. The first "coordinate" is _© corresponding to

2, ... the answer box {_0} in the subquestion, etc.

a Itis a list of model answer, which is the answer defined in the answer field.

r Itis a list of students' response with the same size as _a. The 0-th element is the same
as_o , etc.
_d Itis a list of the different between each elements, givenby _d = diff(_a,_r); ,

see Appendix for the details of the function .

_err Absolute error, using Euclidean norm |a-r| ,i.e. _err = sqrt(sum(map("*", d, d)));
_relerr Relative error, divide the absolute error by the norm of model answer |a-r|/|a]| ,
i.e._relerr = _err/sqrt(sum(map("*", _a, _a)));
Note:
o The corresponding input boxes of @, 1, ... canbe specifiedas { 0}, { 1}, ... inthe

subquestion text.

« _relerr is NOT defined for algebraic answer! So the _err should be used instead.

« For non-algebraic response, the students' response will be rescaled toward the unit of the model
answer. For example, if the model answer is 2m and the students' response is 199cm, then _a is [2] ,
while _r is [1.99] and _@ is1.99 . It has no effect if no unit is used.

» For the example of more than one "coordinate": if _a = [100,100]; r = [101,102]; ,then_relerr
= sqrt(1*¥1+2*2)/sqrt(100*100+100%¥100) = 0.0158

« Inthis sense, the answer defined in the answer field is only a "model answer" because it may not
directly related to the correctness of answer.

Manual grading criteria

In general, other than true or false, the grading criteria can be any number between 0 (all wrong) and 1 (all
correct). For the value 1, it means the student can get the full mark for this subquestion (see Grading
scheme). A fractional value here can represent the partial correctness of the response. Note that value
smaller than 0 is treat as 0 and value bigger than 1 is treated as 1. The following are ony some situations
that manual grading criteria is desired:

1. Multiple correct answer: Suppose that you have asked a question for a number x that is a multiple
of 7and 40 < x < 50 .How can you achieve this? As mentioned before, the variable _0 will store the
response when a student input the ansyour, say 42 . The following formula can check whether the
response is correct:

@ == 42 || _@ == 49

2. Multiple criteria: The above example only use a fixed number, so how to grade answer with random
variations? Suppose you now want a question with a variable range for each questiona < x < a+10 . To
determine the correctness, you need to check two criteria, type the following in the Grading Variables and
Grading Criteria box respectively:

criterionl = 0 % 7 == @; # whether the remainder is ©. Note that true is 1 and false
is o.
criterion2 = a < 0 & & 0 < a+10; # whether the response is in the desired range.

criterionl && criterion2

3. Mark for different accuracy: Suppose you want to give different marks for the accuracy of the response,
say full mark for 1% absolute error and half mark for 1% to 5% absolute error. The following criteria can be
used:

casel = _err < 0.01;

case2 = _err < 0.05;

max (casel, ©.5*case2)

Unit system

It allows you to test the knowledge of students about unit. Also, it allows the student to use alternative units
for the same answer, provided that they are convertible to each other.

You can specify mark fraction deduction for a wrong unit. The wrong unit here means that the unit that is
not convertible to the correct unit, under conversion rules. Suppose a student get 2 marks for this
subquestion answer. If the unit penalty = 0.2 and she give wrong unit, then the student can get 2(1-0.2) =
1.6 mark for this submission. (See Grading scheme).

If a teacher does not specify any unit for the subquestion, then the unit box will not be displayed and there
is no need for students to enter it. However, if the student enters anything after their answer, it is usually
considered to be incorrect so the mark of unit will be deduced. Hence, in the above case, it is better to set 1
for mark deduction.

Nevertheless, if you do not want to penalize the student entering arbitrary string at the end of answer, set 0
for mark deduction. i.e. their unit does not count toward their grade, but you still allow student use any
convertible unit. Note that you have assumed a default answer that does not require unit.

Unit and format

A unit is either a base unit or a composite unit:

 Base unit: a simple alphabetic string without exponent (e.g. #2)
« Composite unit. compose of base unit separated by space, possibly together with exponents. Note that
the ordering of base unit is not important

For a given physical quantity, the unit name can be entered using the following rules:

1. Base unit: e.g. length (m), it should be simply entered as m

2. Positive exponent: e.g. area (m?), it should be entered as m~2.

3. Negative exponent: e.g. wavenumber (m™), it should be entered as m*(-1).

4. Compose unit: e.g. velocity (m s2), it should be entered as m s~ (-2) with the base unit separated by
the space (representing multiplication).

5. Alternative for negative exponent: One preceding division operator can also be used, say m/s~2 which
is equivalenttom s~ (-2).

Students need to enter the same format for unit (i.e. they need to know the above rule). Examples:

Unit Description

m a base unit, meter, for the dimension length

kg a base unit, kilogram, for the dimension mass
N a base unit (it is called derived unit in SI), newton, for the physical quantity force
m/s a composite unit, for the physical quantity velocity

kg m/s*2 a composite unit, with the same dimension as newton

Examples of answer with unit:

1m

0.1 m"2

20 m s”(-1)
400 kg m/s
100 KW

Conversion rules

Conversion rules allow students to use alternative unit. For the details of the rule, See UnitConversion.

Other rules: You can specify the conversion of the base unit by equating their values under different units.
Examples:

1 m= 100 cm = 1000 mm;
1 cm = 0.3937 inch;

With the above conversion rule, the following responses are completely equivalent:

10 inch
25.4 ¢cm
254 mm
0.254 m

For the SI prefix, an alternative syntax can be used: base unit followed by a list of SI prefix name.
W: kMGT;
which is equivalenttol W = 1e-3 kW = 1e-6 MW = 1e-9 GW = 1le-12 TW .

Basic conversion rule: For the conversion between common Sl unit with different prefix, there are a set of
predefined conversion rules for them. The only thing you need to do is to choose the '‘Common SI unit' in the
'Basic conversion rule'.

The following answers in the each group

5 s
5000 ms
5e9 ns

9.2 m/s
200 mm/s

1 m™2
10000 cm™2
le-6 km"2

are all equivalent to each other. So if one of the answer is correct, all other are also correct answers.

Note that you may also use ‘None' if you find it contradicting with your own rules. If you want to define you
own, see the file conversion_rules.php.

Identifying composite unit: Note that, the base units and composite unit cannot be identified in the
conversion rules above. To specify a list of allowable composite unit, you can use separator '="in the 'Unit'.
For example

N = kg m s*(-2)

It identity the unit Newton to its SI counterpart. Hence, both composite unit are correct.

Trial mark sequence

This option only apply to the adaptive mode of moodle quiz.

In the adaptive mode, students are allowed to submit answer to a particular question again and again. This
field defines the mark sequence that a student can get for each resubmission. Note that it actually alter the
default behavior of the adaptive mode.

The input is a list of numbers separated by comma. Each number represents a fraction of the maximum
mark that a student can get in the first, second, third, etc. submission. Hence, if this field has value 1, the
student can try it once only.

If the sequence is ended with a comma, infinite resubmission is allow. In this case, the mark that students
can get in the following unlisted trial is decreased uniformly with the value equal to the difference of last
two value. Note that the minimum mark is always zero (See grading scheme).

Trial mark Maximum mark for each Description

sequence trial

1 100% Only one trial is allowed

1,0.7,0.3 100%, 70%, 30% Three trials are allowed

1,0.7,0.3,0 100%, 70%, 30%, 0% Four trials are allowed, but the last trial has no mark

1,0,0,0 100%, 0%, 0%, 0% Four trials are allowed, but only the first trial has non-zero

mark

1, 100%, 100%, 100%, ... Infinite trials. The difference is 0, which is repeated

1,.9, 100%, 90%, 80%, 70%, Infinite trials. Difference between 1st and 2nd trial is 10%,
60%, ... which is repeated

1, .6, 100%, 60%, 20%, 0%, 0%, Infinite trials. Difference between 1st and 2nd trial is 40%,

which is repeated

1,.5,.3, 100%, 50%, 30%, 10%, Infinite trials. Difference between 2nd and 3rd trial is 20%,
0%, 0%, ... which is repeated

Grading scheme

The following is the grading formula used to grade a particular subquestion:

Symbol Description

c Correctness. It takes value between 0 and 1. Boolean false is treated as 0 and true is treated as
1. Other values may be possible if manual condition is used (see Grading criteria)

u Deduction for wrong unit (see Unit system). In the formula, it always takes value 0 if the unit is

correct under Conversion rules

m Default mark of the subquestion.

r_n Maximum mark fraction of the n-th submission, for adaptive mode only (See Trial mark
sequence)

f The computed final mark.

For non-adaptive mode:

f = m*c*(1-u)

For adaptive mode (see moodle documentation):

f = max(r_n*m*c*(1-u))

The maximum is taken over all submissions. From the above formula, even though a student get a low
mark in the first attempt, it is still possible for them to get a higher mark in the following attempt.

Appendix

List of functions for number

pi()

abs(x)

atan(x)
deg2rad(x)
is_infinite(x)
rad2deg(x)
tan(x)
atan2(y,x)

min(x1,x2,...)

acos(x)
atanh(x)
exp(x)
is_nan(x)
round(x)
tanh(x)
fmod(x,y)

max(x1,x2,...

acosh(x)
ceil(x)
expml(x)
log(x)

sin(x)

log(x,base)

asin(x)
cos(x)
floor(x)
loglo(x)
sinh(x)

pow(x,y)

asinh(x)
cosh(x)
is_finite(x)
loglp(x)
sqrt(x)

round(x,precision)

Note that the list of function used in the variable assignment is (almost) a superset of the list of function of
usable in the algebraic formula.

List of operators for number

&& |

/ %
<= ==

| ! <<
&

Note that the operator "*" means "exclusive or" which have different meaning in the algebraic formula. In
algebraic formula, "*" means "power".

List of additional functions for non-number type variables

function

concat(X1,X2,...)

diff(X,Y)
diff(X,Y,N)

fill(N, value)

len(X)

inv(X)

Examples

concat([1],[2,3],
[4])

#1[1,2,3,4]
concat(["A"],["B"])
#["A","B"]
diff([1,1,1],
[1,4,9])

#1[0,3,8]
diff(["x*x"],
["x"2"])

#[0]

diff(["x"],
["x*2"],20)

A list with number >=
0

£il1(3,0)
#1[0,0,0]

len([0:10])
#10

inv([e,3,1,2])
#[0,2,3,1]

Description

return a list by concatenating X1, X2, ... together

% return a list of number D of difference between the list .
Y elementwise.

If Xand Y are a list of number, then D[i] will beabs(X[i]-
Y[i])

If Xand Y are a list of string, then D[1] will be the differenc
between the algebraic formula X[1] and Y[i]

return a list with size N and all elements filled by value

return the length of the list X

return the inverse permutation of X, which is the same as R
infor(i:[@:N]) R[X[1i]]=1i with size N of X.

It has the property

that X==inv(inv(X)) andA==sublist(sublist(A,X),in

join(s,A,B...)

map (uop, X)
map (bop, X,Y)

pick(i,X)

pick(i,x0,x1,...

sort(X)
sort(X,Y)

str(x)

sublist(X,Y)

sum(X)

join(" ",
["Hello", "world"])

"Hello world"

join("",1,"+",2,
"="1)

#"1+2="

map("abs",
[-1,2,-3])
#1[1,2,3]
map("+",[1,2,3],5)
#[6,7,8]
map("<",[3,4],
[1,7])

#[0,1]

pick(1<2,["A","B"])
#"B"
pick(1e,"","A","B")
#ouo
pick(1,[1,2],[3,4])
#1[3,4]

sort(["B","C","A"])
#["A","B","C"]
sort(["B","C","A"],
[0,2,1])
#["B","A","C"]
str(1.1)

#"1.1"

sublist([7,8,9],
[1,1,2])
#1[8,8,9]
sublist([7,8,9],
[2,1,0])
#[9,8,7]

sum([1,2,3])
#6

return a string that join all elements together and separated
string s .

The A, B, . can be any number or string or list.

return a list by applying the operator/function elemenwise t
elements in X.

The uop or bop are the string of unary or binary operators («
functions) for numbers respectively.

map (uop,X) has the meaningas Rin for(i:[0:N])
R[i]=op(X[1i]);

map (bop,X,Y) hasthe meaningasRin for(i:[0:N])
R[i]=op(X[i],Y[i]) for function,

or for(i:[@:N]) R[i]=X[i] bop Y[i] for operator.
Either X or Y can be a number and it will automatically conv
the same size of the other list.

A safe variant of list subscript. It will pick the i-th element fr
the list X or the first element if index out of range.
pick(i,x@,x1,...) will pick the i-th elementin
the[x0,x1,...] ,orx0 if index out of range.

return the sorted list of X in ascending order.
sort(X,Y) will sort the list XY together by sorting Y in asc
order and return the sorted list X.

convert the number x into a string

return a sublist R of X using list Y as index, where R[i] =
X[Y[i]] .

If Y is a permutation, say Y=shuffle([0:5]), then X will be
permuted dependingon'Y

return the sum of all element in the list of number X

*** This function depends on context variables in addition to the function parameters. It is also the core
function to compare the students' response and model answer (see Grading variables). If input X and Y are
a list of string, then X[i] and Y[i] are treated as algebraic formula and all variables in them must be
defined before the location of evaluation. For example,

a = 3;
{1:100};

a X
1]

diff(["a x"],["a x*2"]);

Please note that the actual algebraic formulas should be "3 x" and "3 x*2" in the above case. In the above
evaluation, the d will take a finite value but not close to zero because the algebraic formula are different. In
general, any evaluation failure between two algebraic formula will result in a infinite value INF, so that the
expression, say, sum(d) < 0.01 will always be false.

The evaluation will take place at N randomly selected points defined in all algebraic variables. The result will
be the root mean square difference at all evaluation points (1/N)Z;(X;-Y;)2, which will converge when N tends
to infinity. The N is 100 by default if it is not specified.

