MILLIKAN'S OIL-DROP EXPERIMENT

The quantization of electric charge

Robert A. Millikan (March 22, 1868 – December 19, 1953)

was an American experimental physicist

awarded the Nobel Prize for Physics

in 1923 for his measurement of

the elementary electronic charge

and for his work on the

photoelectric effect.

Starting in 1906, while a professor at the University of Chicago, Millikan worked on an oil-drop experiment, over the years.

He published his results in 1913. Millikan and his then graduate student *Harvey Fletcher* performed the oil-drop experiment to measure the charge of the electron, and, as a result, the electron mass and Avogadro's number. of using oil instead of water seems to be ascribed to Fletcher. Oil drops evaporate very slowly

The brilliant idea

and they can be observed

during their motion.

The oil-drop experiment was realized by using a capacitor with two parallel horizontal plates.

John Joseph Thomson had already discovered the charge-to-mass ratio (e/m) of the electron, in his famous experiment, performed in 1897. He had proved that the so called cathode rays, observed in a vacuum tube, were streams of particles with a negative charge which were named electrons.

However, the actual charge (e) and mass (m) values were unknown. Therefore, if one of these two values were to be discovered, the other could easily be calculated. Oil drops are sprayed into the capacitor through a small perforation; most of them are charged by friction with the nozzle of the atomizer.

The motion of the drops can be observed through a microscope with a graduated scale that allows the experimenter to measure the velocity of the falling droplets.

https://www.youtube.com/watch?v=UFiPWv03f6g

We can divide the experiment into three phases. The first one enables us to calculate the radius of the drops and it is performed in the absence of an electric field. Let's analyze the experiment from a theoretical point of view.

- The drops fall through the air between the plates of the capacitor.
- A single drop is subjected to three forces:
- Gravity (P)
- Archimedes' force (FA)
- Friction with air (Fv)

So the equation of motion is:

$$ma = P - F_A - F_v$$

The viscous drag force is described by Stokes's law: $F_v = 6\pi\eta r v$

 η is the coefficient of friction and $6\pi r$ is the geometric coefficient used for a spherical object:

$$\begin{split} ma &= mg - V\rho_{air}g - 6\pi\eta rv\\ ma &= V\rho_{oil}g - V\rho_{air}g - 6\pi\eta rv = Vg\left(\rho_{oil} - \rho_{air}\right) - 6\pi\eta rv\\ ma &= V\rho g - 6\pi\eta rv \end{split}$$

where V is the volume of the droplets.

The frictional force grows up with increasing velocity till it exactly balances the weight force, for a certain value of speed *v*1.

 $V\rho g = 6\pi\eta r v_1$

So acceleration tends to zero, the drop falls with a constant velocity v_1 , which can be measured. It is now possible to calculate the <u>radius of the drop</u>. η and ρ are known from previous experiments.

$$\left| v_1 = \frac{V\rho g}{6\pi\eta r} = \frac{4}{3}\pi r^3 \frac{\rho g}{6\pi\eta r} = \frac{2}{9}\frac{\rho g r^2}{\eta} \right|$$

In the second phase, Millikan applied an **electric field** between the plates. The droplets were randomly charged and they were pulled upwards or fell downwards depending on their charge and on the intensity and direction of the electric field. Millikan observed a very high number of motions and obtained a lot of data.

We now consider the case of a drop with a positive charge and an electric potential strong enough to overcome the other forces.

The drop is pulled upwards by the electric force.

The equation of motion is: $ma = F_e + F_A - F_v - P$

For a given value of the velocity, *v*₂, the total force and the acceleration are equal to zero.

$$Fe + Fa - P = Fv$$

$$qE - \rho Vg = 6\pi\eta rv_2$$

$$v_2 = \frac{qE - \rho Vg}{6\pi\eta r} = \frac{qE}{6\pi\eta r} - v_1$$

It is possible to obtain the value of **q** from this equation. But Millikan's aim was to prove that electric charge is quantized, namely that there is an elementary charge and all charges are multiples of this value.

So he had to find

the greatest common divisor for the many values of charges he was going to obtain. The charge on a single electron is minimal and it would have been impossible to find an accurate value if the charges of oil-drops had contained too many electrons.

Cosmic rays from atmosphere or X-rays, purposely placed into the air in the capacitor, might produce an ionization of particles and slightly modify the charge of the oil-drops. So we can perform a **third phase** of the experiment and measure the difference Δq that will amount to just a small number of electronic charges.

We conduct the same process as before and find a new terminal velocity.

$$v_3 = \frac{q'E - \rho Vg}{6\pi\eta r} = \frac{q'E}{6\pi\eta r} - v_1$$

We calculate the difference *v*₃-*v*₂ = $\frac{\Delta qE}{6\pi\eta r}$

from this equation it is possible to obtain Δq , because all the other quantities are known or previously measured.

Millikan, working out thousands of measures over the years, could draw graphs that showed clearly how the charges were all multiples of a certain value. Then he calculate the charge of an electron with a very high precision.

- He obtained:
 - $e = 4.774(5) \ge 10^{-10}$ statcoulombs, that is

 $e = 1.5924(17) \times 10^{-19}$ coulombs with an error less than 1%.

Nowadays the accepted value for the electronic charge is:

 $e = 1.60217653(14) \ge 10^{-19}$ coulomb.

Thereafter, it was also possible to calculate the mass of the electron, deriving it from Thomson's result for e/m and to calculate a precise value of Avogadro's number from Faraday's constant. THE

PHYSICAL REVIEW

A JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS

CONDUCTED BY

THE AMERICAN PHYSICAL SOCIETY

BOARD OF EDITORS

F. BEDELL, Managing Editor

J. S. AMES	W. F. MAGIE	B. O. PEIRCE
K. E. GUTHE	R. A. MILLIKAN	C. A. SKINNER
J. C. MCLENNAN	E. F. NICHOLS	J. ZELENY

VOL. II., SERIES II.

THE PHYSICAL REVIEW LANCASTER, PA., AND ITHACA, N. Y.

ON THE ELEMENTARY ELECTRICAL CHARGE AND THE AVOGADRO CONSTANT.

BY R. A. MILLIKAN.

I. INTRODUCTORY.

THE experiments herewith reported were undertaken with the view of introducing certain improvements into the oil-drop method¹ of determining e and N and thus obtaining a higher accuracy than had before been possible in the evaluation of these most fundamental constants.

In the original observations by this method such excellent agreement was found between the values of e derived from different measurements (l. c., p. 384) that it was evident that if appreciable errors existed they must be looked for in the constant factors entering into the final formula rather than in inaccuracies in the readings or irregularities in the behavior of the drops. Accordingly a systematic redetermination of all these constants was begun some three years ago. The relative importance of the various factors may be seen from the following review.

As is now well known the oil-drop method rested originally upon the assumption of Stokes's law and gave the charge e on a given drop through the equation

$$e_n = \frac{4}{3}\pi \left(\frac{9\eta}{2}\right)^4 \left(\frac{1}{g(\sigma-\rho)}\right)^4 \frac{(v_1+v_2)v_1^4}{F},\tag{1}$$

in which η is the coefficient of viscosity of air, σ the density of the oil, ρ that of the air, v_1 the speed of descent of the drop under gravity and v_2 its speed of ascent under the influence of an electric field of strength F.

The essential feature of the method consisted in repeatedly changing the charge on a given drop by the capture of ions from the air and in thus obtaining a series of charges with each drop. These charges showed a very exact multiple relationship under all circumstances—a fact which demonstrated very directly the atomic structure of the electric charge. If Stokes's law were correct the greatest common divisor of this series of charges should have been the absolute value of the elementary electrical charge. But the fact that this greatest common divisor failed to come out a constant when drops of different sizes were used showed that Stokes's

¹ R. A. Millikan, PHYS. REV., 32, pp. 349-397, 1911.

SECOND 124 R. A. MILLIKAN uncertainty. On the other hand, n is often a large number, but with

the aid of the known values of n' it can always be found with absolute certainty so long as it does not exceed say 100 or 150. It will be seen from the means at the bottom of the eighth and the tenth columns that in the case of this drop the two ways discussed in § 6 of obtaining the number which when multiplied by mgt_e/F is the elementary electrical charge yield absolutely identical results.

TABLE IV. Drop No. 6.

Sec.	₽F. Sec.	IF. Sec.	IF. Sec.	1 1 1 F	$\left(\frac{1}{t_{F'}} - \frac{1}{t_{F}}\right)$	*	$\frac{1}{n'} \left(\frac{1}{t'_F} - \frac{1}{t_F} \right)$	n	$\frac{1}{n}\left(\frac{1}{t_g} + \frac{1}{t_F}\right)$
11.848	39.9	80.2	80.708	.01236				18	.005366
11.890	11.2	22.4	22.366	1	.03234	6	.005390		
11.908			22.390	.04470				24	.005371
11.904	11.2	22.4	22.368	1	.03751	7	.005358		
11.882	70.6	140.4	140.565	.007192,	005249		005249	17	.005375
11.906	39.9	79.6	79.600	.01254 {	.003340	1	.003340	18	.005374
11.838			34.748	1 8	.01616	3	.005387		
11.816			34.762	.02870				21	.005376
11.776			34.846				i		
11.840			29.286	03414)				22	.005379
11.904	14.6	29.3	29.236	.03414 }	.026872	5	.005375		
11.870	69.3	137.4	137.308	.007268	021572		005303	17	.005380
11.952	17.6	34.9	34.638	.02884	.0215/2		.003393	21	.005382
11.860				}	.01623	3	.005410		
11.846			22.104	04507				24	.005386
11.912			22.268	.04507 }	.04307	8	.005384		
11.910		1 1	500.1	.002000}				16	.005387
11.918			19.704	05070	.04879	9	.005421	25	.005399
11.870		1 1	19.668		03874	7	005401		
11.888			77.630	01285	.000/4			18	.005390
11.894	38.9	77.6	77.806	1	01079	2	.005395		
11.878	21.0	42.6	42.302	.02364 5	.01019			20	.005392
11.880					Means		.005386		.005384

Duration of exp.	= 45 min.,
Plate distance	= 16 mm.,
Fall distance	= 10.21 mm.,
Initial volts	= 5,088.8.
Final volts	= 5.081.2.
Temperature	= 22.82° C.,
Pressure	= 75.62 cm.,
Oil density	= .9199.
Air viscosity ¹	= 1.824 × 10-7.
Radius (a)	= .000276 cm.,
la	= .034,
Speed of fall	= .08584 cm./sec.,
e1 = 4.991	× 10-10.

¹ In the above and in all the following tables the computations were made on the basis of the assumption ms = 1,825 × 10-7 instead of ms = 1,824 × 10-7 (see § 2). The reduction to the latter value has been made only in the final value of e (see § 10).

Vol. II.] ELECTRICAL CHARGE AND AVOGADRO CONSTANT. 125

TABLE V.

			-	op 100. 10.	_		
4	1F	1 (p	*	$\frac{1}{n'} \left(\frac{1}{t'_F} - \frac{1}{t_F} \right)$	*	$\frac{1}{n} \left(\frac{1}{t_g} + \frac{1}{t_F} \right)$	
18.638 18.686 18.689 18.730 18.686 18.772 18.740 18.720 18.720 18.720 18.816 18.816 18.816 18.816 18.814 18.746 18.746	17.756 17.778 45.978 45.870 45.716 45.758 694.0 27.95 118.388 45.030 34.554 44.826 117.198 44.784	.05628 .02174 .021826 .001441 .03574 .008439 .02217 .02890 .02227 .008518 .022295	5 3 5 4 2 2 2	.006908 .006795 .006860 .006825 .006866 .006876 .006876	16 11 8 13 9 11 12 11 9 11	.006853 .006852 .006851 .006855 .006868 .006866 .006876 .006876 .006876	$V_{i} = 5106$ $V_{f} = 5100$ $t = 23.7^{\circ}$ C. p = 74.68 $v_{1} = .05449$ a = .0002188 l/a = .04390 $e_{1} = 5.065$
18.738				.006860	-	.006861	1

TABLE VI.

Drop No. 14.

4	1F	$\frac{1}{t_F}$	*	$\frac{1}{n'} \left(\frac{1}{t'_F} \frac{1}{t_F} \right)$	n	$\frac{1}{n}\left(\frac{1}{t_g}+\frac{1}{t_F}\right)$	
18.606							
18.732							
18.784							
18.700	46.172	.02163			11	.006820	
18.730	17.8967	05000	5	.006874			$V_i = 5077$
18.652	17.818	.05000			16	.006833	$V_{f} = 5073$
18.656	46.3287	}	5	.006886			t=23.09° C.
18.730	46.258	.02157			11	.006815	p=75.28
18.760	46.266		1.	00/003			$v_1 = .05451$
18.708	67.4737		1	.006803			a = .0002185
18.658	67.148	.01484	1		10	.006823	l/a = .04348
18.668	67.148	1	6	.006840			e1 = 5.064
18.826	17.896	.05588			16	.006831	
18.710	15.8687	0/207				006050	
18.802	15.854	.00305 }	9	.006853	11	.000850	
18.778	730.0	.001370	6	006882	8	.006845	
18.790	23.3767	01266	0	.000662	14	006861	
18.846	23.504	.01200 }	4	.006850		.000001	
18.804	65.416	.01526	1	006871	10	.006865	
18.662	118.970	.008389{	11	006784	9	.006864	
18.704	622.8	.001605	1		8	.006874	
18.730				.006850		.006844	

No.	1L 2.			E	LE	C	r.R.	IC.	4L	C	HA	R	GE		N	D	AV	00	A	DR	0	CO	N.	ST.	AN	T.				135
									_	_			88	1.1	9	- u	eəj	N												
e1×10	61.06	61.38	61.22	61.13	61.20	61.07	61.23	61.03	61.16	60.79	61.09	60.97	61.24	60.95	61.00	61.39	61.30	61.13	61.28	61.22	60.85	61.04	61.36	61.13	61.18	61.22	61.11	60.87	61.14	
1×10	67.18	68.12	68.67	68.64	68.84	10.69	69.71	69.72	70.61	70.41	71.72	72.03	73.04	72.83	74.77	75.30	76.71	77.66	77.85	78.36	78.67	79.02	80.40	82.19	83.73	83.82	84.57	84.54	84.83	
e1×1010	5.507	5.621	5.692	5.687	5.714	5.739	5.820	5.821	5.935	5.910	6.076	6.110	6.224	6.214	6.466	6.537	6.719	6.841	6.866	6.936	6.978	7.024	7.210	7.470	7.661	7.672	1.777	7.774	7.810	
l)a	.1147	.1263	.1394	.1405	.1429	.1499	.1589	.1625	1771.	.1802	.1993	.2073	.2210	.2227	.2579	.2606	.2886	3097	.3104	.3221	.3340	.3368	.3568	.3945	.4112	.4233	4396	.4435	.4439	
st/se	160.2	176.5	195.0	196.6	199.8	209.5	222.0	227.5	247.5	251.8	278.3	289.6	308.8	311.0	360.6	364.2	403.3	432.8	433.8	448.8	466.7	470.7	498.5	551.3	587.8	591.5	614.2	619.7	620.2	- 61.138
Hg).	35.18	36.51	21.12	23.86	34.01	16.00	15.67	16.75	14.70	19.73	18.54	19.01	15.72	13.55	17.17	17.27	14.68	9.70	15.35	10.10	8.60	8.26	16.95	12.61	9.03	10.11	4.46	7.74	9.070	t column
a×10 ⁶ cm.	17.71	14.71	24.29	21.33	14.72	29.84	28.74	26.27	27.49	20.12	18.38	18.16	20.60	23.70	16.16	15.90	16.90	23.80	15.01	22.00	24.88	25.69	11.83	14.39	18.87	16.72	36.53	20.85	16.62	bers in las
	5-10	3-5	12-17	10-13	3-8	27-34	24-28	18-24	32-43	8-15	6-1	8-9	9-17	16-28	5	5-12	6-19	18-42	7-14	8-9	25-30	27-34	2-6	5-10	11-17	9-18	117-136	18-24	6-10	of all num
(V1+V2)0	.009111	.011180	.006762	.006981	.011205	.004653	.004863	.005362	.003109	008370	.008865	.009496	.007110	.004729	.009273	.007430	.007311	.003935	.006286	.011353	.003783	.003615	.010775	.006623	.005314	110900"	.001861	.004360	.008183	Mean
V1 cm./sec.	.03801	.02649	.07246	.05601	.02682	.11032	.10340	.08496	.09581	.05115	.04830	.04254	.05564	.07340	.03503	.03425	03937	.07921	.03150	.06815	.08757	.09346	.02021	.03055	.05347	.04206	.20256	.06599	.04196	
Is (Sec.).	26.830	38.479	14.060	18.229	38.010	9.265	9.879	12.040	10.657	19.950	21.130	24.008	18.347	13.909	29.114	29.776	25.909	12.891	32.326	14.983	11.659	10.924	50.400	33.379	19.227	24.254	5.058	15.473	24.33	
(Volts).	5,090	5,098	5,070	4,582	5,061	4,246	4,236	4,236	2,556	5,054	5,058	5,062	4,238	3,254	4,231	3,317	3,401	2,550	2,559	3,370	2,535	2,539	3,351	2,451	2,533	2,546	1,700	2,321	3,388.5	
Tem. ° C.	23.19	22.89	23.06	23.07	23.06	23.00	22.91	23.06	22.94	23.00	23.09	23.05	22.94	23.18	23.04	22.97	22.81	22.83	22.80	23.02	23.45	23.48	22.98	23.16	23.46	22.90	23.21	23.12	23.03	
ŝ	30	31	32	33	34	35	36	37	38	39	\$	41	42	3	\$	45	\$	41	¥	\$	2	21	23	3	3	S	8	21	58	

Thomson and Millikan verified that atoms contains charged particles called electrons and these electrons carry the "electricity quantum". Rutherford had proved that electrons orbit around a small positive center and his model was the best description at that time of atomic structure but there were some unsolved problems...

Neutron will be discovered in 1932

All copyrights reserved Prof.ssa De Bernardi a.s. 2014-2015