
Gradient and intercept

1 Work out the gradients of lines A to F.

2 Write down the gradient of each of these lines.

a y = 4x + 3 **b** y = 3 + x **c** $y = -\frac{1}{2}x + 5$ **d** y = 6 - 2x

gradient = _____ gradient = ____ gradient = ____ gradient = ____

3 a Which line in question 2 is the steepest?

b How do you know? _____

4 Write down the y-axis intercepts of each of these lines.

a y = 3x + 4 **b** y = 3 + 2x **c** $y = -\frac{x}{3} + 2$ **d** y = 3x

intercept = _____ intercept = ____ intercept = ____

5 Look at the straight line equations.

A: y = x + 2 B: y = 2x + 1 C: y = 2x + 2 D: y = 3x - 1 E: y = x + 2

F: y = -x G: 3 - x = y H: y = 3 - 2x I: y = 4 - 2x

a Write the letter of the line with the steepest gradient.

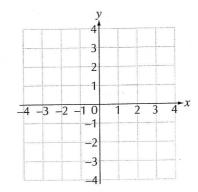
b Which of the lines are parallel to each other?

c Write the letter of the line that crosses the y-axis at the highest point.

d Write the letter of the line that crosses the y-axis at the lowest point.

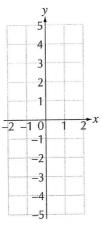
e How many of the lines have a negative gradient?

Drawing graphs - linear

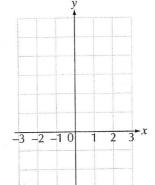

On the coordinate grid opposite draw and label these lines.

b
$$y = -3$$

c
$$x = -3$$


d
$$y = 2$$

2 a Complete this table of values for y = 2x - 1 for $-2 \le x \le 2$.


x	-2	-1	0	1	2	
у	-5			1		_

- **b** Draw the graph of y = 2x 1 on the grid opposite.
- **c** Use the graph to find the value of x when y = 0.

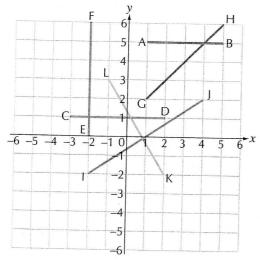
- **3** a Draw the graph of y = 3x + 2 for $-3 \le x \le 3$.
 - **b** Use the graph to find the value of x when y = -4.

Remember: The gradient-intercept method means you start by plotting the intercept and then plot other points by using the gradient.

Use the gradient-intercept method to draw the following graphs on the grid opposite.

a
$$y = 2x + 2$$

b
$$y = -\frac{1}{2}x + 2$$


c
$$y = x + 2$$

d
$$y = 5 - 2x$$

Midpoints

Work out the midpoint for each of the line segments shown on the grid.

Midpoint of:

$$AB = (\underline{\hspace{1cm}}, \underline{\hspace{1cm}}),$$

$$CD = (___, ___), \qquad EF = (___, ___),$$

Work out the midpoints of the line segment AB when

a
$$A = (0, 2)$$
 and $B = (4, 0)$

b
$$A = (-2, 0)$$
 and $B = (0, 4)$

c
$$A = (-2, -1)$$
 and $B = (2, 5)$

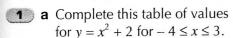
d
$$A = (-3, -1)$$
 and $B = (6, 6)$

3 ABCD is a quadrilateral with coordinates A(2, -1), B(6, 4), C(2, 6), D(-2, 1).

a Work out the coordinates of the midpoint of the diagonal AC. _____

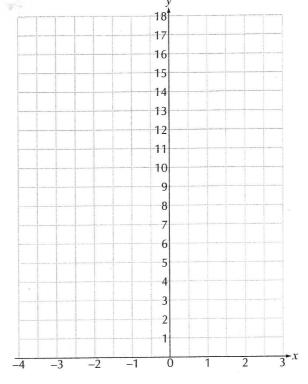
b Work out the coordinates of the midpoint of the diagonal BD.

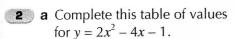
4 The coordinates of the midpoint of a line segment AB are (2, 4).

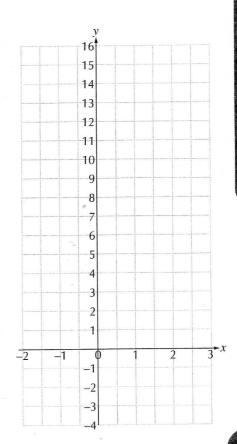

Work out the coordinates of B when A is at

a (0, 0) _____

b (1, 2) _____


c (-1, 6) _____


Drawing graphs - quadratic


x	_4	-3	-2	-1	0	1	2	3	
y	18			3			6		

- **b** Draw the graph of $y = x^2 + 2$ on the grid opposite.
- **c** Use the graph to find the value of y when x = 1.5.

- **b** Draw the graph of $y = 2x^2 4x 1$ on the grid opposite.
- **c** An approximate solution of the equation $y = 2x^2 4x 1$ is -0.22
 - i Explain how you can find this from your graph.
 - **ii** Use your graph to write down another solution of this equation.

